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Perturbation theory for dark solitons governed by the nonlinear Schrédinger equation is developed.
Orthogonality and closure of the basis of squared Jost functions are proved. The general form of a
correction to the one-soliton solution up to first order is obtained. Two examples related to perturbed
dynamics of dark optical solitons are considered within the framework of the adiabatic approximation.
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I. INTRODUCTION

Despite the fact that, at present, perturbation theory
for solitons is well developed, unremitting interest in it
exists since including diversity of perturbations into con-
sideration brings the mathematical statement of problems
closer to physical reality. Two basic approaches in the
perturbation theory can be singled out. The first one, ori-
ginated by papers [1,2] (see also [3,4]), is based on study-
ing temporal evolution of scattering data associated with
the perturbed nonlinear evolution equation. Another ap-
proach deals directly with a linearized equation for the
first order addendum. In that way, the inverse scattering
technique plays an important role, as well: it serves as a
powerful tool for finding a Green’s function of the corre-
sponding linearized equation. Progress of this approach
was connected with the paper [5] and with a number of
consequent investigations [6—8] devoted to properties of
squared Jost functions. Following Ref. [9], where one
can find results related to some classical nonlinear evolu-
tion systems and obtained within the framework of the
approach mentioned, we will refer to this method as a
direct perturbation theory.

The principle point of this approach can be briefly out-
lined as follows. The direct spectral problem associated
with the nonlinear evolution equation is investigated and
appropriate combinations of squared Jost functions are
defined. As they are eigenfunctions of a respective linear
operator orthogonality relations can be found. Then by
studying the mutual relations among small variations of
the scattering data and the nonlinear field, which now
plays a role of a potential, the closure of the chosen basis
is proved. It allows one to rewrite a solution of a linear-
ized equation in a form of an expansion on the basis of
squared Jost functions.

It is worthwhile to mention that the squared Jost func-
tions are of interest for many reasons [10,11,6—8], besides
being the background for the direct perturbation theory.
To the best of the authors’ knowledge, they have not been
studied yet for the stable nonlinear Schrodinger equation
(NSE) subject to nonzero boundary conditions. That is
why it is one of the purposes of this work to state proper-
ties of the respective squared Jost functions.

Another aim of the present paper is to develop the
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direct perturbation theory for a dark soliton dynamics
governed by a perturbed NSE

iq, +q,, +2(p*—lq|))g =pf(x,t)R [q] , (1)

where u is a small parameter, u <<1, f(x,?) is an arbi-
trary bounded function, and R [q] is a functional on ¢ (in
order to shorten some designations in what follows, the
right hand side of Eq. (1) will be set as R ). Equation (1)
is subject to the boundary conditions

g—p at x —>—w;q—>pe’ at x— o (2)

(e=e'%’? and p and ¢ €[0, 7] are constants). Clearly, for

these boundary conditions to be coordinated with (1) one
has to require decay of the right hand side of (1) with x (it
does not matter whether it is due to f(x,t) or R[q]). If
©=0,(1) reduces to the conventional NSE, a soliton solu-
tion of which has a form [12]

_ 1+€Zexp[v(x —vt —x)]
=P 1+exp[vix —vt —x4)]

(3)

with v=ewsin(#/2),v = —wcos(?/2), and 0 =2p.

The direct perturbation theory of a bright NSE soliton
can be found in [9].

Particular cases of perturbed dynamics of the dark soli-
ton within the framework of Eq. (1) have already been
considered in the literature. In the context of optical ap-
plications, the attention of the preceding studying was
paid mainly to the effect of dissipation, i.e., when
f(x,t)R[q]=iq [13], and periodical amplification [14].
The influence of some other physical factors on dark soli-
ton dynamics has been treated analytically in the small
amplitude limit [15]. Results on the perturbed dark soli-
ton dynamics governed by the generalized NSE [16] can
be found in [17]. There the reduction of the perturbed
NSE to the conventional NSE with modified initial condi-
tions, similar to that used in [16] for a bright soliton case,
has been employed. However, the last method is ap-
propriate only for a special kind of perturbation and
hardly can be extended to a generic case. The generaliza-
tion of [16] to the dark soliton case when
f(x,t)R [u]=q(]q|?), and the respective analysis of the
perturbed dynamics have been reported recently in [18].

While most of the calculations about dark soliton dy-
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namics were made on the basis of the numerical study,
development of the consistent analytical theory (similar
to those existing for bright solitons of different equations)
was set aside.

Here we construct a perturbative expansion of ¢ (x,¢)
about g,(x,¢) for a rather general type of the right hand
side of Eq. (1). To this end we prove closure of the basis
made up on squared Jost functions, which allows us to
find a solution of the linear inhomogeneous equation as-
sociated with the perturbed NSE (Sec. II). Then in Sec.
IIT we derive equations describing time dependence of
soliton parameters and represent an evident expression
for the first order addendum. In Sec. IV we consider par-
ticular examples related to the optical pulse evolution in
nonlinear fibers.

I1. BASIS OF THE LINEARIZED OPERATOR

A. Statement of the problem

A conventional way to construct any perturbation
theory is to look for a solution in the form of an expan-
sion with respect to a small parameter. Correspondingly
we represent

q(x,t)=e >0 g (x,t;7)+ugV(x,t;7)] . 4)
The leading order of the expansion has the form

_ 1+efexp{v(r)[x —vt —x4(7)]}
Bl 1+exp{v(7)[x —vt —x(7)]}

qo(x,t;”') (5)

in which the dependence on a slow time
T=ut (6)

is introduced in an explicit form. Whenever we speak
about the adiabatic approximation (5) we have to distin-
guish wsin(3/2) from v(7); also the velocity of the soliton
is equal to —wcos(¢/2) only at ¢ =0.

In contrast to the case of bright solitons, it turns out to
be useful to introduce an additional varying phase ¢(x,?),
the role of which will be clear below. Naturally in order
to satisfy boundary conditions (2) we have to require that

#(x,t1)—0 at |x| — o . v

Also, as far as a soliton dynamics is under consideration
we take the initial condition for the phase as

b(x,t=0)=0. )

Here we should emphasize the difference of our state-
ment of the problem from that of [18]. There are two
possibilities to formulate the perturbation theory of a
dark soliton. We will call them approaches of varying
and constant phases.

The approach of varying phase, which was used in [18],
implies a variation of the phase ¢ with slow time. In this
case only the modulus of the solution is considered to be
fixed at the infinity. Also in that case the relation among
the parameters v,v, and ¢ is the same as in the unper-
turbed dynamics. This approach does have a physical
background, but it derives the solution from the class
defined by (2).
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In the present paper we concentrate on the approach of
the constant phase [defined by (7) and (8)], which has to be
implied whenever the boundary conditions, including the
phase, are fixed. It is worth pointing out that the analysis
of the linearized problem, provided below in this paper,
evidently makes up the necessary basis to build up the
regular perturbative expansion for the varying phases
(which will be reported elsewhere).

Inserting (4) into (1) and holding terms of the first or-
der of u one gets the linear system

L1QV)=04|P) . 9)
Here the operator . is given by
0 @
3 aZ 90
L=i—I— | —+2p*—4|g|* |o;+2
T P CER BV

(10)

with I the unit matrix, o ;(7=12,3) the Pauli matrices,
and a ket vector

|Q(1))=Col(ql,q1) . (11

Throughout the paper values with an overbar are used
for corresponding conjugative ones. The right hand side
of Eq. (9) is given by [P ) =col(p,,p, ), where

Pr=R =i (9 —i8,:)90—2i$:0x (12)
It is worth pointing out that we make a use of a matrix
system containing the linearized equation (1) and its com-
plex conjugation, which is natural for a general formal-
ism [9].

B. Squared Jost functions

The unperturbed NSE is a compatibility condition for
the two systems

g\IL=U(x,t;z)\l/ R (13)
dx
N i 2w (14)
at

(the UV pair can be found, e.g., in [19]; for the sake of
convenience we present it in Appendix A).

The monodromy matrix 7 (z) bounds Jost functions
T, (x;z)[19]

T (x;2)=T,(x;z)T(z), (15)

which are solutions of Eq. (13) defined by the asymptotic
expressions

i190'3
T, (x;z)—exp [— E(x;z) at > o0 , (16)
T (x;z)—>E(x;z) at x—>— o0 (17)
with
1 —iw/z ikx
E(x;z)= io/z 1 exp | — =0y (18)
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and k (2)= Lz —o?/2).
It is not difficult to verify that ¥;=col(W¥//2,¥(%?)
solves the homogeneous equation

LY;=0 (19)

if ¥ are elements of a matrix satisfying the joint system
(13) and (14).

Let us introduce squared Jost functions
[T (x;2)]?

[T(:gj)(x;z)]z (20)

[F@(x;2)) =

Direct algebra allows one to ensure that in the one soliton
case |F{?(x;z)) are eigenfunctions of the operator .L

1+
1—)k(z)x(z)lF§ (x;2)) @D

LIFP(x;2))=
with Mz)=1(z +0?/z).

Thus if we determine a space and prove closure of a set
of functions |F!{(x;z)), then we will be able to obtain a
Green’s function of the operator L. One of important
properties of the squared Jost functions used in this way
is that they link variations of scattering data with small
variations of the potential. Namely, one has

5 — d F(l) $ 22
r(z)= _—A(z)T (z)f x(FO(x;2)[8Q(x)),  (22)
§¥(z)=—— [ * dx(F® 8 23
(2)= A(z)Tz(z)f x(F2(x;2)|8Q(x)) ,  (23)
1
s = [ dx(FQ(x;z018Q(x))
Yida™ Az(zk)T”(Zk f k I Q
(24)
1
7,82, = dx(Fm(x z.)[8Q(x)) ,
eda (Zk)Tzz(zk f k Q
25)
by, —— L [8__1
T Tz | 92 AADT(2)
X [7 dx(FQ(x;2)|8Q(x) | _
—® 2=z
26)
J
d . . [x NS
| 5—2q(x)fgjid§q<§) 2q(x)fgjid§q(€>
TY=

—29(x) [, d&g (&)
*

where g/ are constants which must be found from the re-
lation

T TE) = f;' dE[gEFY +q(E)F' W) (36)
T

3 X
T (x)fgé:dé‘q(é')

-1 |8 1
Ty(Z,) | 92 AX2)Tp(2)

7=

X f_wmdx(F(_z’(x ;2)|8Q(x)) -

27
Here we use conventional designations
TZI(Z) le(x)
= , Flz2)= ; 28
r@=T o T T, @8
Yi=v(z), Vi=7(2Z), 29)
(2) T21(Z) Tu(z)
Z)=—"— =12 :
[ASAYPSY ) A2 Tp(2)
8y =08y(z ) +7(z, )0z,
¢ ¢ Y e (30
67k=87(2k)+7(2k)
2
Alz)=1—= (31)
V4

where z; and Z, are zeros of T;,(z) and Tp,(z) in the
upper and the lower 2z half plane, respectively;
T,,(z, )=T,,(2; )=0, overdots denote the derivative with
respect to the argument, and §/f(z; ) means [§f (z)],=,k.

Representations (22)—(27) are obtained from the well
known formula [19]

8T(2)= [ dxT3!(x;2)8U(x;2)T_(x;2) , 32)
where
87
SU(x;z)= 8¢ O (33)

describes small variations of the field g(x,?).

C. Orthogonality

As is customary, in order to state orthogonality rela-
tions we notice that the squared Jost functions solve an
equation

YPIFP(x,2)) =—iM2)|F{(x,2)) (34)

with the integro-differential operator

(35)

to satisfy the limiting transitions x —+o. Then there
exists an equality

(FO(x;2)YPIFP(x32)) +{FP (x52) | YD FP(x52"))
=—i[M2)— Az FP(x;2)|FP(x32)) (37
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(some general properties of the respective vector algebra
are outlined in Appendix B). On the other hand, direct
algebra allows one to represent the left hand side of (37)
in the form

“%[(T‘f(x )| TV (x32')) . (38)

Thus, using asymptotic expressions (16) and properties
of Dirac’s delta function one finds the orthogonality con-
ditions

f_w dx (FY(x;z)|FY(x;2))

—4#(1*80 T]](Z)S(Z —z' (39)

if Imz =0, |z| > w. It is worth pointing out here that sen-
sitivity of the orthogonality relations to the location of a
spectral parameter is predictable due to an analogy with
the well-known behavior of the eigenfunctions of the
operator io;d /dx +(w/2)0, [19].

D. Expansion of the unity

In order to express variations of the field through vari-
ations of the scattering data we will use the formalism of
the Reimann problem associated with the unperturbed
NSE. Omitting details, which can be found, say, in [19],
we briefly outline the final statement.

Let us introduce matrices ¥, (x ;z)

Y, (x;2)=T,(x;z)exp _ik2_x03 (40)
Then
V_(x;z)=V¥,.(x;2)S(x;z), (41)

where the matrix S(x;z) is expressed through the mono-
dromy matrix

ikx
— X,

S(x;z)=exp 5 T (z)exp L’;—x—m (42)

Designating by single upper indices columns of corre-
sponding matrices we make up new ones

H,= [\pg’\p‘f’ 43)

It is not difficult to verify (see [19]) that H, and H_ are
analytical in the upper and lower half planes of z, respec-
tively.

The Reiman problem can be formulated in terms of
matrices

H(x;z2)=H,(x;2),G(x;2)=H' (x;2), (44)

where a conjugative matrix is defined by the rule (B4).
Direct algebra yields

1 —S12(x;2)

G (x;2)H(x;2) S,1(x;2) 1

=A(z) (45)
at Imz =0.

Varying the linear spectral problem (13) and using the
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relation H 'H . H '=—(H™'),, valid for any nonde-
generate matrix H, one gets the representation
8U=(8HH '), —[U,8HH ']
=—(G18G),+[U,G7'8G] . (46)

Using analytical properties of matrices H and G this ex-
pression may be rewritten in the form

SU=A""—[UA7]. @7)
Hereafter we use designations
AFx;z)=8HH ~'6(Imz)+G ~'8GOH(—Imz)
48)

[with 6( ) the Heaviside step function] for appropriate
combinations analytical in the whole z plane. QOur aim
now is to evaluate A'~). To this end we recall Eq. (45),
which after variation yields on the real axis

O —8S12

-1
855, 0 H . (49)

A‘“=%A(:)G*

It follows from (46) and (48) that A'™’
AP =[U, AT (50)

solves the equation

Now we employ properties of the matrix H as follows:
(i) It is analytical in the upper half plane of z. (ii) It is de-
generate in points z;, so that elements of the inverse ma-
trix have simple poles. (iii) Its behavior in points *w is
different in a generic case and in a pure soliton case.
Then, using the Cauchy formula we derive (by closing the
contour in the upper half plane)

H(x;z)H '(x;2)0(Imz)

__L g d& ey (-
2m.fg_ZSH(x,g)H (x ;£)6(Imé)

(I, +I_). 51)

1 _
+ Res, 8HH ~'—
2,:’ z—z Sz

By analogy for G ~!8G we have
le(x'z)SG(x'z)G(—Imz)

f——iG*l £)8G (x;£)6( —Imé)

2m

+3 Res, GG~

k Z7Zy

(I, +T_). (52)

In formulas (51) and (52) we use the designations

j=1im[f' R N R (53)

e—0 —ote
“Hx; (54
=5 fyi—é—g_ 8H(x;6)H ~'(x;€) )
_§_ -1 (55
I=-— f7 G (x;6€)8G(x;6) . )

Contours v, and 7 are shown in Fig. 1 and summation
in (51) and (52) is carried over all poles z; and Z; num-
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Q)

FIG. 1. Contours 7+ and 74 around the edges of the contin-
uum spectrum.

bered correspondingly by a subindex k. Thus for A' ™) we
have a representation

(“yoy= L 8 (4.
AT (x;2) 2m’-f§-zA (x;€)

+3—LRes, sHH !
k2 "2 k
+ Res, G'86G
kZ27Z  k
+I,—I, +T_—1I_. (56)

In the case of general situation T, =I, =0, which is a
consequence of the independence of the columns
TV (x:4+w) and T (x;tw) [ and T?(x;+w) and
TV (x;+w)] [19]. However, in the pure soliton case the
integrals mentioned give a nonzero contribution. Namely
we have (Appendix C)

-~ a4

Ii_l:l:= Z(iw—z)S“(ia))I ’ (57)

where a are residues of 8T, in points . Thus there
exist two properties

d - -
“a;(lj: —I.), [B,I,—1.]=0, (58)

where B is an arbitrary matrix.
Inserting the expression (56) in (47), using (45), (48),
and properties (51) and (58), one finds

8U=[03,M] (59)

where
1 (+)( s
= faeA x;)
+i—g(keszkaﬂﬂ—I—Res,kG—ISG) .

(60)

In order to calculate M we notice that A'*) can be
represented in the form

A=A+ A+ A +A, (61)

]

|8U)— 8r(&)|FP(x; §)>+—

f A(§) f A()

VN SN

4 -

N -y N
-w w é

FIG. 2. Contours c and .

where

S&r Ty,
An= T(2)>_<T(2) , = T(l)) <T(2) (62)
o=IT?) TATPI, A=] AT” P
KO=IT‘1’)%(T‘J’I, =T (1)) 22 (T?] . (63)

22

Correspondingly, the integral in (60) can be splitted into
four parts. Since A, and A, can be analytically continued
to the upper and lower z half planes, one can write

fd§A1=§ReszkAl+ [fy++ fy_ ]ang1 . (64)
fd§7\1=%Res2k7\1+ [f7++f7_ ]d§7\1 . (69

Two other parts having A, and A, in integrands are
represented as

faeno= [ deno+ [f,++f,_ ]dng, (66)
faeho= [ dehot [f7++f?_ ]d§7\0 67)

(contours ¢ and ¢ are sketched in Fig. 2). As above, in-
tegrals over v+ and 7 equal zero in the case of a general
situation. In the pure soliton case (see Appendix C)

7Ta:t
f dE(Ag+A,)— f dE(Ay+A))= mz (68)

the residues appearing after the substitution of (64) and
(65) into (60) are evaluated (Appendix D):

Res, (BHH ™ '+A)

=—8y | TPz ) (TP (z,)]

— Y0z

—SZ—IT(i)(z))( TP (2)| ] , (69)

=z}

Res,k(G"aG+7\1)

= =87, I TV T ()]

— 752 (70)

g’;lm’(zmm’(z)l

=2,

Using (70) and (71), the variation 8U, given by (59) and
(60), can be represented in the form

SF(E)|F P (x;€))

—2[87k|F(2)(x 2,)) +y 0z, |[FP(x, zk)>]——2 187, |[F P (x32,)) =782, |[F P (x,2,)) ] . 7



2402 VLADIMIR V. KONOTOP AND VADIM E. VEKSLERCHIK 49
The last step is to insert (22)-(27) into this formula. As a result we have
1 1 1 1
8x —x"N=— [ dE|F'P(x;6)) —5—5—(FV(x",6) —— [ d€|F P (x;6)) ————(FP(x",8)]
4r fc EIF(x3¢ AXAET? (&) Lipres fa S xse AXE)TE(E) §
+ o3 | 2P x2) (P O(x',2)
2i k Tll(zk) 0z A (Z)T”(Z) z=z,
s L 18 p0ie)) — L (FOx',2)] (72)
2i k T22(2-k) dz A (Z)Tzz(z) z2=17;
f
The expansion of the unity (72) allows a more compact plt,z)= f " dx(FY(t,x;2)|04|P(,x)) , (77)
representation, which reads 7
ﬁ(t,z)=f dx (F¥(t,x;z)|o;|P(t,x)) . (78)

np=-L ey — [ Blx x'-
8(x —x")I yym er(x,x ;2)dz ym ffﬂ(x,x ;2)dz

(73)
where
1, — . 1 ',
Q(x,x ,z)—|F(.,%)(X,Z)>m(F(_“(X 2, (74
Fa' ’, —_ . 1 ’,
Q(x,x ,z)—lFSD(x,z))Xz—(;)—T%Z(—Z)(F‘E’(x ;2), (75

and contour I'(T") goes over (under) all zeros z, (2, ) in the
upper (lower) z half plane. In particular, for the case un-
der consideration T and T are outside the circle |z| =w
(Fig. 3).

III. PERTURBED DYNAMICS OF A DARK SOLITON

A. General formulas

Now we have all that is necessary to study the dynam-
ics of a dark soliton affected by perturbations. The per-
turbation 04| P(t,x)) is represented in the form (valid for
any ket vector)

03|P(t,x))=Lf ——ZP—(—I—Z—)——IF‘Z’ (t,x32))
47 r A (z)T

z———E(—tZ)————IF "t,x32)) .
417' r

AXz)T%4(z

The coefficients of this expansion are determined by

FIG. 3. Contours I" and T.

Here we have used the orthogonality condition (39).
Correspondingly the solution of the linear problem we
are looking for is represented in the form

16Q(t,x) )———f

y(t,z)
z)T 1(2)

1 y(t,2) (0
—— | dz——>>——|F
4m fr Az(z)T%Z(z)i "
Then applying the operator .L to both sides of (79), equat-

ing the result to (76), and taking into account zero bound-
ary conditions we compute

|[FP(t,x;2))

(t,x;2)) . (79)

y(t,z)=—iexp[ —ik(z)A(z)t]
X fotdt’p(t';z)exp[ik(z))»(z)t'] , (80)
y(t,z)=—iexplik (z)A(z)t]

><fo‘dt'p(z';z)exp[—ik(z)x(z)t'] . (81)

Formulas (79)-(81) completely define the first order ad-
dendum in the dynamics of the perturbed dark soliton.

After the insertion of (80), (81), (77), and (78) into (79),
formula (81) yields the first order addendum in the per-
turbed dynamics of the dark soliton.

B. Excluding secular terms

Let us analyze the results obtained concentrating on
one-soliton dynamics. After the insertion of (80) into (79)
and changing the order of integration one finds that the
integral with respect to z can be transformed to the sum
of the integral over the real axis, the contribution of poles
inside the circle |z| =, and the contribution of the edges
of the continuum spectrum z =t [such a representation
can be directly obtained with the help of (73)]. We treat
these parts separately.

Starting with the discrete spectrum, we notice that in
the points z; and Z, (the suffix k has been replaced by 1)
there are second order poles of the respective integrands
in (79). This results in the temporal growth of the ampli-
tude of the solution |8Q ). It is a secular growth which
can be excluded by slowly varying parameters of the soli-
ton. Bearing in mind that the order of the poles is two,
we conclude that the condition for the corresponding
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contributions to be equal zero are

p(t,zl)=ﬁ(t,71)=0 (82)
and
ap(t,z) | _ 9p(tz2) —0. (83)
aZ zy az 2‘1
Since  there exists an  involution  property

T?(x,z2)=0,TV(x,Z) [19], it follows from the (77) and
(78) that in fact one has to deal with either Eq. (82) and
(83). For the sake of definiteness we will consider the
pole z,.

Passing to the contribution of the points z =tw, we
take into account that the expansion is made about the
one-soliton solution for which T;(fw)==1. Hence,
bearing in mind the involution properties (A9), one con-
cludes that after a change of variables z—?/z in the
second integral in (79), both terms can be combined. By
this way it is found that the points tw are first order
poles of the integrands in (79). In a generic case y(t,z)
also may display secular growth because of integration
over t. In order to prevent it one has to require that

p(t,tw)=0. (84)

As above, due to the symmetry T(l)(x,:tw)
=+iT% (x,+w) [19], (84) reduces to one equation, say
for w.

Let us insert into (82)-(84) the evident form of the
one-soliton squared Jost function { F!| (see, e.g., [20)),
-2

(FO|= |2+
zZ

2 _ 2
% ¢
zp

_4
z p

(85)

with g, given by (3). As a result the equations at hand are
reduced to

I

Ccos

2@ ————Imgp,=0, (86)
h

©/2
e

2=
2

DA 0 _
—cos—z*f_wdx +tanh7 Imep,

cos
+sin-12f‘m dxRegp, =0 (87
27 -« R

3 o _ .Y re ®
cos—- f_wdxlmsp, —sino- f_wdxtanh—

> Regp,; =0 .

(88)

=v(7)§ and {=x —vt —x,(7), respectively. To derive
(87) we took into account the relation (88).

Despite the fact that the unperturbed soliton is deter-
mined by two parameters [say A(z,) and ¥, ], we obtained
three conditions. This is a peculiarity of the dark soliton
dynamics. In other words, slow variations of only two

parameters of the soliton cannot prevent the secular
growth. To make this statement more evident we note
that the term i€dq,/d7 from (12) is real and hence its
contribution to the integral (86) gives zero at any time
dependence of the parameters v(7) and xy(7). This
means that if the perturbatlon R contains a part giving a
nonzero contribution in (86), the respective secular
growth cannot be compensated for by variations of the
soliton parameters. It is the reason why the phase ¢(x,t)
is introduced in the representation (4).

C. On definition of phase

Now we consider the phase contribution in more de-
tail. To this end we write Eq. (86) in the explicit form,
taking into account the evident expression (12) for p,,

) dx

% | —COoS—
-« cosh¥(®/2)

¢xx +sin

(S]
¢,tanh—2—

(89)

To all appearances the choice of the phase is not unique.
In particular, one could require the integrand in (89) to
be zero. It is reasonable, however, to look for the expres-
sion for the phase coordinated with that obtained by
another approach following from the conservation law
for the momentum

e
P= 57 f_wdx(qxq q7q,) . (90)

To this end we integrate the term proportional to ¢,, in
(89) by parts and make a transformation to new variables:
(x,t)—>(0,t). As a result we obtain

fw doe sinh(®/2) vsinlz—-vcos—12
—® cosh(®/2)

2 2 vée

+sin£¢,tanh9- + lImEﬁ =
2 2 p

91)

[hereafter ¢ is considered as a function of (®,?)]. Noting
that only the odd (with respect to ®) part of the perturba-
tion yields a contribution to the integral we introduce the
designation

F(®,t)=—%coth 9 Ime(R(©,n+R(—0,0]. ©2)

Then the phase subject to the conditions (7) and (8) can
be found in the form of an odd function on ®. Namely,
we have

¢= [arr@,1') 93)

1
psin(d4/2) Yo

(note that in this case ¢g is an even function and its
respective integral is equal to zero).

Direct calculation of 3P /3t allows one to verify that
the expression (93) for the phase is obtained also from the
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modified conservation law for the momentum

%z— [~ dx(Rg,—Rq,) . (94)
However, in the way just described one meets the follow-
ing problem. Unless R(®=0,7)=0, the phase diverges at
®=0. The nature of this phenomenon becomes clear
from the original perturbed equation (1). Indeed, after
substitution of the adiabatic form (5) into (1), one easily
finds that the imaginary part of the left hand side multi-
plied by € equals zero at ®=0. The factor Imgg, at ¢,
also is equal to zero. Thus, if ImeR#0 at ®=0, the
phase does not exist unless ¢, = co. It is a situation when
the “adiabatic” term requires global renormalization (and

]
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even the term ‘“‘adiabatic”’ no longer has the conventional
sense). Moreover, taking into account that the phase is
an odd function of ® we have to require that

ImeR '} (©,1)~®% at ®—0 . (95)
In what follows we restrict our consideration only to this
case.

D. Equations of the adiabatic approximation

Having introduced the phase we can rewrite Egs. (87)
and (88) in the form conventional for the adiabatic ap-
proximation,

dx, . 1 v 0,2 ©
i I d® | ——R', (0,0)—— |—222 __ 4tanh 2 [R”(®,1)
dt ffoo vev T Vv | cosh’(@®/2) 2
v o, ,R5(0,1) v @ , Y% 3 1
~ OV (g =2 142 {tanh 2+ —0 [1-2———— | | |, 96)
v f 0 sinh® w? 2 2 2 cosh¥(®/2)
Dy Y[ 46 |tanh |2 R (0,0+ 2R (0,1 ©7)
dt Vo —w ) - ’ Yo + ) .

Here we introduce the designations

R'¢(®,t)=%Re[€ﬁ(®,t)ieE(—@,t)] : (98)

R'i'(®,t)=%—Im[Eﬁ(@,t)?eE(~®,t)] . (99)
Also

v0=wsin129— (100)

is the initial value of v(z):w(z =0)=w,; a conventional
designation vy = —wcosd /2 is used.

It is worthwhile to mention that the equation for v can
be obtained directly from the first conservation law

dN

7=2pf_wdx1m(qﬁ) , (101)
where
N=[7 dx(lgl*~p?) . (102)

Formulas (96) and (97) allow the general treatment in

the case R =R(®). The equation for v is singled out. It
takes the form

dv _

i wAv, (103)

where A is a constant evidently defined by (97). In other
words,

v=vgexp(u At) . (104)

IV. EXAMPLES

Let us consider now some particular examples of the
perturbed dynamics of a dark soliton.

A. Dark soliton under random perturbation

Evolution of picosecond optical pulses in the regime of
normal group velocity dispersion in a single-mode fiber is
governed by Eq. (1) with u=0 [16]. In order to describe
the effect of the fluctuation of linear and nonlinear sus-
ceptibilities, or the derivations of the core radius along
the fiber axis, one has to write down the right hand side
of (1) in the form

f(x,)R[g]—ple(t)g+x(1)lgl?q],

where €(t) and x(t) are arbitrary (in particular, random)
functions on time.

Though the perturbation (105) does not decay with
|®|, it is not difficult to verify that the substitution

(105)

q(x,0)=exp [iyfotdt’[e(t')—l-pz)((t')] ulx,t)  (106)

reduces the problem at hand to the equation

iu, +u, +(p?—u|Hu=px(t)p?—|ul?)u (107)
with the perturbation satisfying all necessary require-
ments.

Considering initial conditions for ¢ (x,¢) being a dark
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soliton, u(x,t) can be treated within the framework of
the theory developed above. For the perturbation of the
form x(t)(p*— |u|*)u we immediately obtain

t ’ ’
¢é(x,t1)=0, v=const, xo(t)=x0(0)—u% fodt x(t') .

(108)

Comparing the outcome with the one known for a
bright soliton case [22] one finds an essential difference.
The nonlinear term with Y(¢) leads to fluctuations of the
dark soliton velocity, while it results only in the phase
fluctuations of a bright soliton.

B. Evolution of the black soliton

In the case when the perturbation has the structure as
follows:

tR(®)=iR".(®)+R"_(O), (109)
the phase is obtained to be

- t O |pn

o= psin(ﬁ/Z)COth > R'{(®). (110)

A particular example of such a situation is the propaga-
tion of femtosecond optical pulses in nonlinear single-
mode optical fibers [16].

If also 9=, we are dealing with the so-called black
soliton (the terminology accepted in optics is used). In
this case vy=0,vy=w, and Egs. (96) and (97) are
simplified drastically

de _ 2

T— Ef—wd®R+(®’t)
v ot ® {0
2 lar [T —5=—R"(0,1"),
2v(2,f0 ~w cosh¥(®/2)
111
dv _ v row 0 |,
= pvof_wd('Dtanh > [R=@,n. (12

As it could be expected, the velocity of the black soliton
is determined only by a component of the perturbation
having the parity opposite to that of the soliton.

V. CONCLUSION

To conclude, we have obtained the first order adden-
dum to the dark soliton caused by perturbation. In a
generic case the dynamics of a dark soliton has peculiari-
ties when comparing it to the corresponding situation in
a bright soliton case. It is the appearance of the rapid
phase modulation of the leading order term in the pertur-
bative expansion. This is unlike the conventional adia-
batic approach in the perturbation theory of solitons.

Another peculiarity of the dark soliton dynamics is
connected with the fact that a phase modulation leads to
the creation of new solitons [20]. The last process is
thresholdless and hence should be taken into account.

The consideration has been restricted to the case of
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fixed phases. Meanwhile, as far as the Green’s function
of the linearized problem has been defined, it is not
difficult to extend the theory for the case of varying
phases, when @(x,?) =¢(¢).

The above problems will be considered elsewhere.
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APPENDIX A

The operators U and ¥V are given by [19]

_ |M2)72i q
U(x,t;Z)"‘ q _}\,(Z)/ZI ’ (AI)
lgl2—=AXz)/2i —idg/dx —MZ)g
Vix,t;z)= O _ 2 2 . ’
—idg/ax —Mz)g —|q|*+AXz)/2i
(A2)

where A is a function of z, introduced in formula (21).
One can straightforwardly check that the compatibility
condition for the system (13) and (14)

U—-v,+tuv—vu=0 (A3)

(the so-called zero-curvature condition) is equivalent to
the stable NSE. The scattering problem (13) with the ma-
trix U given by (A1) possesses symmetry (involution) with
respect to the inversion z —w?/z:

U(x,t;2)=Ul(x,t;0%/z) (A4)

(the dependence on time is omitted), which manifests it-
self in the properties of the Jost functions and the mono-
dromy matrix. So, one can get from (A4) together with
the boundary conditions (19) that

Ti(x,wz/z)=-z;Ti(x,z)az . (A5)
This relation leads to the following one for the monodro-
my matrix T defined by (15):

T(0?/z)=0,T(2)0,, (A6)
i.e., T'(z) may be represented as
T, (z2) —Ty(0*/z)
T(z)= (A7)

TZI(Z) T“(a)z/z)

From this representation it is clearly seen that

the zeros of T';(z) and T,,(2),z; and Z; correspondingly,
are related by

602

Zy=—.
k 2z

(A8)

Note also that the property (AS5) implies
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|FQ(x;0%/2)) = —(22/0®)|FP(x;2)) , (A9)
where i5jand i,j =1,2.
APPENDIX B

In the paper we use the following designations and re-
lations

lu)=colluy,u,), (ul=(—uyu,), (B1)
u, w,

(ujw)=det uy wy | (B2)
—uw, uw,

lu)(w|=det —uyw, uyw, (B3)

A'=(deta)a ", (B4)
(c]

(a) b)) (g1 [=ladel+]b)(d], (BS)

introduced in [21], where useful properties of these vec-
tors can be found.

APPENDIX C

The involution of the scattering data can also be writ-
ten in terms of the modified Jost functions and monodro-
my matrix ¥, and S:

\Pt(x,wz/z)=i\l’i(x,z)az : (e}

S(0?/2)=0,S(z)0, . (C2)

Using the involution properties (C1) and (C2), one can
derive the following relation between the matrices G and
H defined by (43) and (44):

Gl(w?/2)= iH(z)az . (C3)

Varying this identity and wusing the fact that
detH =A(z)S,(z), one can obtain
S1(2)

8
[6HH ')(2)+[G '8G w*/z)=————I . (C4)
S“(Z)

This can be used to calculate the integrals around the
points To.
Noting that

1 1
2mi tw—z

I fyidg{SHH_l(g)

+G 718G (w2 /)
(C5)

and applying (C4) one can obtain (57). Analogously, the
involution properties (C1) and (C2) can be used to evalu-
ate the integrals around ¥, and 7, in (64) and (67). To
this end note that the matrix functions Ay, and A
defined by (62) and (63) are related as follows:

2

Ao “’7 =—Aq2), (C6)
2

A=Al ()
z

[which, again results from (C1)]. Hence
fyidng(é‘)— f?idng(é)
= [ delA9)+Ro0?/£)]=0  (CB)
Y
and
J denor— [ deRio)
=fid§[A1(§)+7\1(m2/§)] (C9)
Y
= [ deglAO—AlD)] .
vyt

Noting that for any two columns ¥ and ¢

W) (ol =) (pl=(gly)I (C10)
and that
(TEOITV(E)=—AT (8, (C11)
one can obtain from (C9), (62), and (63)
s bt ek
(C12)

in the pure soliton case.

APPENDIX D

Using the definition of the matrix H [see (43) and (44)]
one can write the matrix SHH ~! as follows:

1 _<T(-E)|
—1— (1 )
SHH [8T), 8T ) AT, | (T
(D1)
Employing the fact that
T‘“-|T<_“>=|Tsp>+r|r<3’>, (D2)
where r(z) is given by (28), one can represent
S8HH ~'+ A, in the form
SHH ™'+ A,= (8T ) (TP|~ 57 W12
—|8T? Ysr(T?|} . (D3)
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Note that the first two terms inside the curly brackets are
regular at the points z; while for the last term z;’s are the
poles of second order, since &r=8T, /Ty
—T,,8T,, /T?,. Using the formula

flz) _ 1

% T%I(Z) - T“(Zk)

da _f(z)
dz T,,(z)

(D4)

zZ2=2z

one can derive

2407
Reszk(BHH_‘+A1)
=|—|T% )——(T%|
I AT, 7
+—.1—1|T2+ Yy8T,{T% | (D5)
T, dz 7=z

Now some simple algebra leads to the result (70),
where the quantities 8y, are defined by (30). The formu-
la (71) can be obtained in a similar way.
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